unbiased$86466$ - traducción al griego
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

unbiased$86466$ - traducción al griego

EXPECTATION OF ERROR OF ESTIMATION
Unbiased estimator; Biased estimator; Estimator bias; Unbiased estimate; Unbiasedness

unbiased      
adj. απροκατάληπτος, αμερόληπτος

Definición

median
['mi:d??n]
¦ adjective
1. technical, chiefly Anatomy situated in the middle, especially of the body.
2. denoting or relating to a value or quantity lying at the mid point of a frequency distribution of observed values or quantities.
denoting the middle term (or mean of the middle two terms) of a series arranged in order of magnitude.
¦ noun
1. a median value.
2. (also median strip) North American term for central reservation.
3. Geometry a straight line drawn from any vertex of a triangle to the middle of the opposite side.
Derivatives
medianly adverb
Origin
ME: from med. L. medianus, from medius 'mid'.

Wikipedia

Bias of an estimator

In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency; because a biased estimator gives a lower value of some loss function (particularly mean squared error) compared with unbiased estimators (notably in shrinkage estimators); or because in some cases being unbiased is too strong a condition, and the only unbiased estimators are not useful.

Bias can also be measured with respect to the median, rather than the mean (expected value), in which case one distinguishes median-unbiased from the usual mean-unbiasedness property. Mean-unbiasedness is not preserved under non-linear transformations, though median-unbiasedness is (see § Effect of transformations); for example, the sample variance is a biased estimator for the population variance. These are all illustrated below.